The New Model of Parallel Genetic Algorithm in Multi-Objective Optimization Problems

نویسندگان

  • Tomoyuki HIROYASU
  • Mitsunori MIKI
  • Sinya WATANABE
چکیده

In this paper, Divided Range MultiObjective Genetic Algorithm (DRMOGA) is proposed. The DRMOGA is a model of genetic algorithm in multi-objective problems for parallel processing. In the DRMOGA, the population of GAs is sorted with respect to the values of the objective function and divided into sub populations. In each sub population, simple GA for multiobjective problems is performed. After some generations, all individuals are gathered and they are sorted again. In this model, the Pareto optimum solutions which are close to each other are collected by one sub population. Therefore, this algorithm increases the calculation eÆciency, and the neighborhood search can be performed. Through the numerical examples, the followings are become cleared. The DRMOGA is very suitable GA model for parallel processing. In some cases, the DRMOGA can derive the better solutions compared to both the single population model and the distributed model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization

This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...

متن کامل

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flowtime through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters with it, this is why in recent decades extensive researches have been done on scheduling issues. A type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical ...

متن کامل

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...

متن کامل

Comparing Parallel Simulated Annealing, Parallel Vibrating Damp Optimization and Genetic Algorithm for Joint Redundancy-Availability Problems in a Series-Parallel System with Multi-State Components

In this paper, we study different methods of solving joint redundancy-availability optimization for series-parallel systems with multi-state components. We analyzed various effective factors on system availability in order to determine the optimum number and version of components in each sub-system and consider the effects of improving failure rates of each component in each sub-system and impr...

متن کامل

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

Optimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm

Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000